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Biological aspects to enhance fracture healing
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•	 The ability to enhance fracture healing is paramount in modern orthopaedic trauma, 
particularly in the management of challenging cases including peri-prosthetic fractures, 
non-union and acute bone loss.

•	 Materials utilised in enhancing fracture healing should ideally be osteogenic, 
osteoinductive, osteoconductive, and facilitate vascular in-growth.

•	 Autologous bone graft remains the gold standard, providing all of these qualities. 
Limitations to this technique include low graft volume and donor site morbidity, with 
alternative techniques including the use of allograft or xenograft.

•	 Artificial scaffolds can provide an osteoconductive construct, however fail to provide an 
osteoinductive stimulus, and frequently have poor mechanical properties.

•	 Recombinant bone morphogenetic proteins can provide an osteoinductive stimulus; 
however, their licencing is limited and larger studies are required to clarify their role.

•	 For recalcitricant non-unions or high-risk cases, the use of composite graft combining the 
above techniques provides the highest chances of successfully achieving bony union.

Introduction

Bone grafting is a surgical procedure whereby bone tissue 
is transplanted from one area to another in order to repair 
or replace non-viable bone or augment the native healing 
response (1). Following blood transfusion, bone grafting 
is the second most commonly performed modality of 
transplantation, with over two million cases performed 
annually worldwide (2). Bone grafting is not, however, 
without complication, with issues including donor 
site morbidity and potential immune reactivity when 
allograft and xenograft are utilised (2). Therefore, modern 
treatment strategies utilise a combination of bone graft 
and bone substitutes, synthetic materials that can also be 
inserted into the site of bone loss with or without bone 
graft to augment healing (3).

Within trauma, there are a number of indications for 
bone graft, spanning from acute use for traumatic bone 
defects, as part of staged bone defect management 
such as that achieved with the masquelet technique, to 
augment stability and healing in high-risk fractures such 
as peri-prosthetic femoral fractures, or in improving the 
biological activity of an atrophic non-union (4, 5, 6, 7). 
Irrespective of the aim, successful healing with bone 
grafts can be considered using the diamond concept 

conceptual framework, which states that successful bone 
healing is dependent on the provision of osteogenic cells, 
osteoinductive mediators, an osteoconductive matrix, 
mechanical stability, and adequate vascularity (8, 9). 
Osteogenicity refers to the provision of osteoprogenitor 
cells, osteoinductivity to the ability of the graft or 
substitute to support the proliferation and differentiation 
of these osteoprogenitor cells, and osteoconductivity to 
the ability of the substance to facilitate the migration, 
attachment, and ingrowth of osteoprogenitor cells into 
the graft (10, 11). These factors must be taken into account 
when considering the type of graft orsubstitute utilised to 
augment bone healing.

This review will summarise the frequently utilised bone 
graft and substitutes utilised for bone repair, describing 
their properties, current clinical use, and potential 
therapeutic targets moving forward.

Autograft

Autogenous bone grafts, either cortical or cancellous, 
represent the gold standard against which other grafts 
are held against (12). Both cortical and cancellous grafts 
incorporate via a two-phase process, with the early 
phase consisting of inflammation, revascularisation, 
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and osteoinduction and a late phase consisting 
of osteoconduction and graft incorporation with 
remodelling (13). This process of creeping substitution 
occurs more quickly in cancellous grafts, with both 
osteoclasts and osteoblasts resorbing and producing 
new bone simultaneously over the whole of the graft bed 
(11). This is in contrast to the incorporation of cortical 
bone where the dense organized structure necessitates 
an initial osteoclastic resorptive phase, with osteoblasts 
subsequently laying down new bone in line with the 
orientation of the osteoclasts (11). This means that 
cancellous grafts will incorporate within 6–12 months, 
whereas cortical grafts will initially weaken and may take 
years to fully incorporate and return to full strength (14).

Autogenous bone grafts possess a number of 
characteristics that establish their role as the gold 
standard. They possess a high number of osteogenic 
precursor cells within the graft with no risk of immune 
reaction facilitating the generation of new bone in the 
defect (15). They similarly provide an osteoconductive 
three-dimensional structure onto which new bone can 
form, and a significant number of osteoinductive growth 
factors including transforming growth factor-beta (TGFβ), 
bone morphogenetic protein-2,4 (BMP-2,4), and pro-
angiogenic factors such as vascular endothelial growth 
factor (14, 16).

Compared to cortical bone grafts, cancellous bone 
graft provides a more osteogenic, osteoinductive, and 
osteoconductive material. They are however limited in 
terms of their mechanical structure due to the loose 
trabecular structure (17). Cortical autografts possess 
greater mechanical stability, but have poorer osteogenic 
and osteoinductive properties when compared to 
cancellous graft, and lose a portion of their mechanical 
strength due to resorption during the initial resorption 
and revascularisation phase (15). Issues with resorption 
can be overcome through the use of vascularized cortical 

grafts, however, this introduces increased complexity 
to the operation and increased donor site morbidity 
to the patient (17). Augmentation of osteogenesis and 
osteoinduction can be provided through the use of 
bone marrow aspirate concentrates (BMACs); however, 
this provides no augmentation of osteoconduction 
and concerns have been raised regarding heterotopic 
ossification with the injected marrow migrating away from 
the injection site when inserted in isolation (18).

The anterior iliac crest remains the most common site 
for the harvest of autogenous bone grafts, with both 
cancellous and cortical bone grafts available from this 
site (19). Other commonly utilised locations include the 
posterior iliac crest, proximal femur, proximal tibia, distal 
tibia, calcaneus, and distal radius (20). Where higher 
volumes of cancellous bone graft are required, the reamer 
irrigator aspirator system has provided access to the 
harvest of large volumes (35–90 cc) of bone graft from 
the long bones, most commonly the femur (21, 22, 23) 
(Fig. 1).

Cortical bone grafts have been successfully employed 
in a number of body regions with good results. Hollo et al. 
reported on the use of iliac crest cortical bone graft and 
plate fixation of clavicle non-union achieving restoration 
of clavicular length union in 100% of cases (24). Wang 
et al. similarly utilized iliac crest bone graft to support the 
articular surface in the management of depressed tibial 
plateau fractures undergoing open reduction and internal 
fixation. Of the 43 patients who completed follow-up, all 
patients united, and just two elderly patients lost reduction 
post fixation (25). The scaphoid represents another 
common site where cortical bone graft is frequently 
employed. Huang et al. achieved a 94% union rate in their 
series of 49 scaphoid non-unions treated with iliac crest 
bone graft and fixation with a Herbert screw (26). Poorer 
results have been observed when scaphoid non-union is 
managed with non-vascularized distal radius grafts (73% 

Figure 1
Autologous cancellous bone graft. (A) 
Cancellous graft harvested from the 
posterior iliac crest of the pelvis. (B) Graft 
harvested from the femoral intramedullary 
cavity using the RIA device.
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union), though this improves with the use of a vascularized 
distal radius graft (89% union) (27). In a randomized trial 
of cortical vs cancellous bone graft of scaphoid non-union, 
cortical graft did not appear to improve union rates (90% 
cortical vs 94% cancellous) (28).

Due to its improved osteogenicity and osteoinductivity, 
cancellous bone graft demonstrates a wider range of 
indications. Cancellous bone graft is the mainstay of 
the induced membrane technique in the management 
of critical bone defect. Using this technique, union rates 
of between 80 and 90% are achievable with defect sizes 
up to 25cm (7). In addition, cancellous bone graft has 
demonstrated utility in the management of avascular 
necrosis of the femoral head where it can be implanted 
into the femoral head following core decompression 
(29) to augment healing following high tibial osteotomy 
for unicompartmental arthritis where it results in fewer 
complications (30) or for impaction bone grafting in the 
management of patients with protrusio or with bone 
defects undergoing complex arthroplasty (31).

Vascularized bone grafts are less commonly performed, 
with higher morbidity and surgical complexity than non-
vascularized grafts. Frequent indications included the 
management of non-union including vascularized distal 
radius graft for scaphoid non-union, vascularized fibula 
or vascularized iliac crest grafts for bone loss, vascularized 
medial femoral condyle grafts often used for post-
traumatic avascular necrosis of the talus or navicular/
non-unions of the midfoot, and vascularized fibula graft 
in the management of avascular necrosis of the femoral 
head (32, 33, 34). BMAC is also less frequently utilised 
than other forms of autograft, with its usage mainly in 
the setting of augmenting fracture healing. Whilst it is 
suggested that BMAC can both improve and accelerate 
the rates of healing, there is little clear clinical data 
available due to discrepancies inn the definition of what 
constitutes treatment-grade BMAC, and therefore, this is a 
current topic of interest to many studying augmentation 
of fracture healing (35, 36).

Whilst autograft provides an excellent form of bone 
graft, there still exist limitations mainly regarding limits 
of the volume of graft available to harvest, donor site 
morbidity (pain, infection, haematoma, prolonged 
wound drainage, sensory loss), and increased magnitude 
of surgery experienced by the patient as part of the 
harvesting process (37).

Allograft

Allograft represents a commonly utilised alternative to 
autograft, particularly when large volumes of graft are 
required. Allografts are tissues that have been harvested 
from one individual and implanted into another individual 
of the same species (38). There are a number of sources 

of allograft including from living donors (femoral head 
following total hip replacement), following organ retrieval 
in an organ donor, or those taken post-mortem where the 
risk of disease transmission is higher (39, 40, 41). Allograft 
as with autograft can be cortical or cancellous and can 
also take the form of osteochondral segments for articular 
defect reconstruction. Incorporation mirrors that of 
autograft, however with a more significant inflammatory 
phase due to the increased immunogenicity (38).

Allografts, in most instances, do not contain any live 
cells and therefore are not osteogenic. They provide 
an osteoconductive scaffold and structural support to 
augment healing, and in some instances can exert a 
minimal osteoinductive potential (11). Demineralised 
bone matrix (DBM) is a specialised form of allograft 
that comprises over 50% of allograft use in the USA. 
It is a highly processed form of allograft that contains 
collagens and non-collagenous proteins facilitating 
osteoconduction and also bone morphogenetic 
proteins (BMPs) and other proteins that provide it with 
osteoinductive properties (42).

Due to potential pathogen transmission and immune 
reaction, allograft must be sterilised prior to implantation 
into the recipient. Initial debridement of soft tissue 
and washing is performed using ethanol followed by 
irradiation. Irradiation treatment is performed at a dose 
of 25 kGy, capable of eliminating most bacteria and 
viruses, however importantly is not virucidal for HIV and 
therefore screening procedures of donors remain critical. 
Freezing can then be performed, either by freezing at 
0°C, freezing in liquid nitrogen at −196°C, or by freeze-
drying (43, 44). Radiation treatment of frozen bone tends 
not to affect the mechanical stability; however, irradiation 
of dried bone will substantially compromise its strength 
(45). DBM undergoes a similar debridement phase, 
following which the bone is morselised and subjected to 
acid demineralisation with hydrochloric acid followed by 
freeze-drying. The final powder is then combined with a 
commercially available carrier following which it is ready 
for use (46).

One of the core usages of allograft is in the management 
of bone loss when performing complex primary or 
revision arthroplasty. In this setting, autogenous graft 
will not be sufficient in volume and therefore structural 
allograft is instead utilised to manage significant defects, 
facilitating the restoration of bone stock and mechanical 
support to the prosthesis. The results in this complex 
population are promising, with survival rates often 
quoted between 80 and 90% at 5 years (47). Structural 
allograft is also of benefit in the management of femoral 
periprosthetic fractures where the stem remains well 
fixed. Haddad et al. reported on the technique of strut 
allograft with or without plate fixation achieving a union 
rate of 98% (48). Similar success was also noted by Font-
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Vizcarra et al. (49). In addition to managing issues with 
bone stock in the arthroplasty population, the allograft 
is frequently employed in the management of defects 
following oncological procedures. Wisanuyotin et  al. 
reported on 47 patients undergoing a limb salvage 
approach for primary bone tumour, treating an average 
defect size of 16.2 cm, achieving successful union in 75% 
of cases, comparable to their cohort who underwent 
cortical autograft (50).

Allograft can also be utilised in the management of 
osteochondral defects of the knee which are too large to 
be managed via other means, or where the underlying 
bone is also diseased (such as avascular necrosis 
(AVN)). Current literature suggests 10-year survival 
rates between 80 and 85%, with between 12 and 18% 
requiring a revision procedure or arthroplasty following 
osteochondral allograft (51, 52, 53). Particulate allograft 
and DBM are less commonly reported on despite their 
frequent use as an osteoconductive medium or an 
expander for alternate types of graphs. Most commonly 
they have been successfully employed in spinal fusion 
as a graft expander without adversely affecting the 
fusion rate, in the management of non-union where its 
efficacy in isolation was lower than that of autograft, and 
in the management of small bone defects adjacent to 
periarticular fractures of the tibia, fibula, femur, humerus, 
forearm, and acetabulum (54).

Whilst allograft represents a useful tool in the 
management of large bone defects, there are still a 
number of limitations to its use. First of all, the preparation 
and storage of allograft necessitate the establishment of a 
tissue bank, which is both expensive and labour-intensive. 
The mechanical strength of each graft can be affected by 
the treatment and therefore one must ensure that adequate 
stability is provided in addition to the graft. Allograft has 
limited osteoinductivity and no capacity for osteogenicity, 
acting only in an osteoconductive manner and therefore 
these must be supplemented otherwise should the effects 
be desired. Finally, one must be cognizant of the potential 
for disease transmission with its use, though modern 
screening keeps this risk to a minimum (2).

Xenograft

Xenotransplantation encompasses any procedure that 
involves the transplantation or infusion of a non-human 
animal substance into a human, be it in the form of cells, 
tissue, or fluid (55). Introduced in the 1950s, the majority 
of xenografts utilised in humans are bovine in source, 
though their use initially was prevented due to the alpha-
Gel epitope expressed on the cell membrane to which 
humans produce an antibody that leads to graft rejection 
(56). Prevention of this phenomenon is achieved through 
the removal of all organic components of the xenograft, 

which may be achieved through heat treatment (though this 
may affect the graft crystalline structure), or hydrothermal 
hydrolysis with sodium hydroxide and dissolution of the 
organic component using ethylenediamine or sodium 
hypochlorite (57).

Interest in xenograft has arisen given the high 
availability at low cost from healthy donors (55). Current 
preparation techniques aim to maintain the structure of 
the graft without removing all osteoinductive growth 
factors to ensure that the graft retains the properties of 
osteoconduction and osteoinduction (58). Nonetheless, 
the initial introduction of these grafts was fraught with 
high failure rates and complications including failure of 
integration, graft rejection, and local soft tissue reactions 
(59, 60, 61, 62).

Commercially available bovine xenografts have been 
successfully employed in a number of small series spanning 
the distal radius, tibial plateau, and to reconstruct the 
donor site following iliac crest harvest (63, 64, 65). A 
recent review, however, reported that in the majority of 
series the use of xenograft resulted in an unacceptably high 
rate of morbidity, thereby recommending against these 
products use (66). Currently, there are no xenografts that 
are recommended by the Federal Drug and Administration 
body (66).

Growth factors

Bone morphogenetic proteins

Recombinant bone morphogenetic proteins (Rh-BMP) 
represent the largest subfamily of the TGFβ family 
(67). Within the skeletal system, they have a number 
of functions including the induction of bone and 
cartilage in vivo through stimulation of the proliferation 
and differentiation of osteoblasts, rendering them 
osteoinductive (68). Rh-BMPs are produced via 
recombinant DNA technology, following which they 
are concentrated and combined with a carrier (e.g. 
collagen) to improve their handling qualities (69, 70, 71). 
Commercially available preparations take a powdered 
form which when combined with saline produces a 
paste that can be implanted into the bone defect being 
addressed (42).

At present, the use of Rh-BMPs is restricted, with 
Rh-BMP-2 licenced only in acute open tibial fractures 
and anterior lumbar interbody fusion, and Rh-BMP-7 
licensed in long bone non-union and posterior lumbar 
interbody fusion (11). Within the open tibial fracture 
population, the BESTT trial demonstrated significantly 
faster fracture healing with reduced reoperation when a 
Rh-BMP-2 sponge was applied to the fracture site at the 
time of definitive wound closure (72). In a canine model, 
Rh-BMP 7 has been demonstrated to accelerate the speed 
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of incorporation of allograft, with early results in human 
also proving positive (73).

Rh-BMP 7 has been demonstrated to be efficacious 
in the long bone non-union population. In a series of 
84 long bone non-unions across both the upper and 
lower limbs, Papanagiotou et  al. were able to achieve 
uneventful union in 81% of cases managed with Rh-BMP 
7 and bone graft +/− revision fixation at a mean of 
5.4 months (74). Of those that failed to heal with this 
approach, 75% had co-existing infection predisposing to 
treatment failure. Kanakaris et al. reported on a series of 
30 patients with aseptic femoral non-union managed with 
BMP-7 alongside autograft where there was a bone defect 
greater than 1 cm (12 cases) (75). This included nine cases 
that had already underwent a failed autograft procedure. 
Union was achieved in 26 cases (87%) with a median time 
to union of 6 months. Giannoudis et  al. also examined 
the role of BMP-7 combined with autograft in a series of 
45 patients with atrophic non-union affecting the femur 
(19 patients), tibia (19 patients), and humerus (7 patients) 
(76). In this series, 45% of patients had undergone 
a previous autograft procedure, however, following 
treatment with BMP-7 (combined with further autograft 
in 20 cases), all patients went on to achieve union at a 
median of 5.5 months. The authors suggested that 
there may be a synergistic effect between BMP and the 
autograft, which, however, advocated the performance 
of larger randomized controlled studies. Friedlaender 
et  al. conducted an RCT comparing the use of Rh-BMP 
7 with autologous bone graft in the treatment of tibial 
non-union, establishing that there was no difference in 
union rate at 9 months (81% Rh-BMP 7 vs 85% autologous 
bone graft), and a significant reduction in complications 
relating to donor site which were present in 20% of the 
autologous bone graft group (70).

Though off-label, BMPs have also been investigated in 
the management of critical bone defects. In a canine ulna 
model, Salkeld et al. were able to demonstrate that the 
combination of Rh-BMP 7 with either autograft or allograft 
lead to faster times to union and a higher mechanical 
strength by 12 weeks post-operative (77). Haubruck et al. 
performed a single centre analysis of the use of Rh-BMP 2 
and Rh-BMP 7 combined with autologous bone grafting 
as part of the management of lower limb long bone non-
union (both single and two-stage), establishing a 91% 
consolidation rate when Rh-BMP 2 was utilised, compared 
to just 58% with Rh-BMP-7 (78). They did not, however, 
establish a control group when BMP was not utilised. 
Similar advantages to the use of BMP 2 over BMP 7 were 
seen by Conway et al. (79).

Whilst BMPs show promise, there are a number of 
drawbacks to their use. Containment of BMPs can be 
challenging, with a propensity to migrate away from their 
site of application. This can lead to complications including 

ectopic bone formation which has been demonstrated to 
be problematic at a number of sites including the C-spine, 
tibial plateau and the pelvis (80, 81). The processing costs 
similarly make BMP products expensive, often restricting 
their usage to resistant or high risk cases (42). Finally, 
it should be noted that BMP-7 has been withdrawn 
from the market recently by Olympus biotec, a decision 
purely based on commercial reasons rather than lack of 
effectiveness or safety concerns.

Platelet-rich plasma

Platelet-rich plasma (PRP) has been an ongoing topic of 
interest in bone healing given its critical role in the native 
response to fracture where they recruit mesenchymal 
stem cells (MSCs), secrete growth factors, and promote 
angiogenesis (82, 83). When utilised ex-vivo, they have 
been demonstrated to increase osteoblast proliferation 
and subsequent osteoid deposition, hence rendering 
these products osteoinductive (84).

PRP is produced through the process of differential 
centrifugation which separates components of the 
patient’s blood based on differing specific gravities. 
Whole blood is initially centrifuged with the resulting 
supernatant containing high concentrations of platelets 
and white blood cells. The supernatant is subsequently 
re-centrifuged following which a small platelet-rich pellet 
forms in the base of the tube. The supernatant is removed 
and the pellet is resuspended in a small volume of plasma 
to produce PRP. This process is simplified through the use 
of commercially available PRP harvesting preparations that 
can harvest PRP from between 20 and 60 mL of whole 
blood (85). The platelet count within these preparations 
generally varies based on the volume of blood utilised, 
the speed of each centrifugation, and the duration of 
centrifugation; however, PRP is generally defined to 
contain 1.25–1.5 × 106 platelets/mL (86).

Data regarding the use of PRP to augment bone 
healing following trauma is relatively limited, with a 
recent systematic review finding only nine studies (eight 
randomised) examining its use (87). In this review, PRP 
was demonstrated to produce higher union rates when 
utilised at the time of ORIF of acute scaphoid fractures, 
however, demonstrated no differences in the union rates 
when applied to fractures of the femur, distal radius, hip, 
calcaneus, or mandible. As with many studies of this type, 
limitations included differing methodologies in producing 
PRP with none of the included studies defining the 
concentration of platelets utilised (87, 88).

Within non-union surgery, the use of PRP has 
demonstrated promising results. PRP can be utilised as 
an osteoinductive substance added to autologous graft, 
demonstrating higher healing rates and faster union times 
across a number of both randomised and non-randomised 
studies (89, 90, 91, 92). PRP can also be employed as a 
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percutaneous injection into long bone non-union, 
particularly in comorbid patients where the risks of more 
extensive surgery are high, with series demonstrating 
healing rates of between 65 and 93% utilising this 
technique (93, 94, 95, 96).

Although promising, current research into PRP is limited 
by the lack of a clear definition of the product, and varying 
techniques in its production. Moving forward further 
randomised studies are required to validate its use, with 
a clear discussion of centrifugation techniques, platelet 
concentration achieved, and volume utilised.

Peptides

In addition to Rh-BMP, recombinant DNA technology has 
raised interest in a number of naturally occurring peptides 
that have been utilised to augment bone healing (97).

The most studied of these molecules is parathyroid 
hormone1-34 peptide (PTHP). This synthetic analogue 
consists of the first 34 amino acids of the native 84 amino 
acid molecule, is administered as a subcutaneous injection 
(under the trade name teriparatide), and is demonstrated 
to stimulate osteoblast proliferation and differentiation, 
rendering it osteoinductive (98). Whilst its main usage 
comes in the management of osteoporosis, there is weak 
evidence that PTHP may be efficacious for a number of 
indications including the management of stress fractures, 
sacral insufficiency fractures, hip fractures, periprosthetic 
fractures, and long bone non-union (99, 100, 101, 102, 
103, 104, 105).

Parathyroid hormone-related protein (PTHrP) is a 
much larger protein (139–175 amino acids) that has been 
demonstrated to be critical in both the development of the 
fetal skeleton and osteoblastic activity in fracture healing 
(106, 107, 108). Animal studies on this topic suggest that 
the use of synthetic PTHrP can enhance fracture healing 
resulting in a higher osteoblast concentration with larger 
callus formation, a higher stiffness and resistance to torque 
than those individuals where PTHrP was not utilised (109, 
110). Whilst the preclinical results are promising and the 
use of PTHrP in osteoporosis demonstrated to be effective, 
there are no human studies assessing PTHrP in fracture 
healing, and therefore, its use is not currently supported 
(111).

A number of additional peptides provide potential 
future targets, albeit with limited animal-based evidence 
available. Calcitonin gene-related peptide is usually 
found in nerve endings, periosteum, and bone marrow; 
has been demonstrated to increase in expression at 
times of fracture repair; and result in increased bone 
formation during fracture healing in mice (112, 113, 
114). This molecule may play a role in nerve in-growth 
during fracture healing, the absence of which has been 
demonstrated to preclude towards non-union (115). 
In vitro studies have demonstrated that osteogenic 

growth peptide (OGP) can regulate osteoprogenitor 
cell differentiation and proliferation resulting in higher 
alkaline phosphatase activity, osteocalcin secretion, and 
matrix mineralisation (116, 117, 118). In animal models, 
systemic administration of OGP has been demonstrated 
to result in greater callus formation, whilst local 
administration to segmental bone defect via a carrier 
has been demonstrated to result in higher bone volume 
production at an accelerated rate (119, 120). Despite 
promising pre-clinical data, there does not yet exist any 
clinical data in humans, and therefore, further research 
is required before routine use of these molecules can be 
encouraged.

Synthetic bone substitutes

Synthetic bone substitutes represent an attractive option 
in augmenting fracture healing, providing mainly an 
osteoconductive material without donor site morbidity 
or the potential immune and infective complications 
posed by allograft (121) (Fig. 2). The main synthetic bone 
substitutes are presented later.

Tricalcium phosphate

β-Tricalcium Phosphate (βTCP) is a synthetic compound 
containing both calcium and phosphate, which is 
osteoconductive and undergoes cell-mediated resorption 
(122). It can be manufactured by three main techniques: 
(i) solid-state reaction of a calcium-rich and a phosphate-
rich phase, (ii) thermal conversion of amorphous calcium 
phosphate, and (iii) direct precipitation in an organic media 
such as ethylene glycol (123, 124, 125). Typically, βTCP 
is available as a paste; however, it can be manufactured 
into scaffolds through extrusion printing with changes 
to its topography and porosity utilised to manipulate its 
osteoconductive and cell homing properties (122).

βTCP is mechanically weaker than cancellous bone, 
and has a reported resorption time of between 13 and 20 
weeks which means the operator must be cautious as it 
may resorb prior to substitution by native bone (121). This 
has, however, more recently been challenged with the 
synthetic graft remaining in situ at over a year post tibial 
plateau fixation (126). Within trauma, βTCP has proved an 
effective graft substitute at a number of sites including the 
humerus, elbow, forearm, distal radius, tibial plateau, distal 
femur, and tibial plafond (126, 127, 128, 129). It results 
in minimal post-operative articular displacement when 
utilised to fill metaphyseal defects in periarticular fractures 
and is reported to have good to excellent incorporation in 
75% of cases (127, 129). In the augmentation of healing 
of proximal tibial osteotomies, βTCP was demonstrated to 
be non-inferior to autologous bone graft, albeit with low 
overall numbers (130).
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Calcium sulphate

Calcium sulphate, also known as plaster of Paris (CaSO4), 
is an osteoconductive molecule that can be formed into 
an injectable fluid or hard pellets (4). It is manufactured 
through the dehydration of the naturally occurring 
mineral calcium sulphate dihydrate (CaSO42H2O) (131). 
Once set, it produces a structural graft with a compressive 
strength similar to cancellous bone that undergoes 
rapid resorption over a period of 4–12 weeks and can 
be combined with antibiotics increasing interest in these 
molecules where fracture-related infection is present 
(11). The most commonly encountered commercially 
available products include osteoset, stimulan, and 
cerament (132) (Fig. 3).

When combined with antibiotics such as gentamicin, 
calcium sulphate provides a valuable tool in providing a 
high concentration of local antimicrobial that elutes over 
a period of 4 weeks (133). The use of local antibiotics has 
revolutionised the management of long bone fracture-
related infection, reducing recurrence rates from 30 
to 40%, to less than 10% (134, 135, 136). Calcium 
sulphate bone substitutes have also been demonstrated 
to be efficacious when managing small bone defects (<1 
cm), with graft resorption and new bone incorporation 
occurring over a course of 6 months with good clinical 
results (137). For larger defects, the clinical evidence is 
more limited and therefore traditional techniques should 
be employed.

Figure 2
Demonstration of the use of a synthetic 
material Greenbone block for defect 
treatment of the pelvic iliac crest. (A) 
Comparison between the tricortical iliac 
crest harvested for a pubic symphysis fusion 
with the synthetic greenbone block. (B) 
Intra-operative picture showing the 
greenbone next to the iliac crest defect prior 
to implantation. (C) Cutting with an electric 
saw the green bone block scaffold to 
appropriate length. (D) Implantation of the 
green bone by press fitting application 
within the iliac crest defect. (E) AP pelvic 
radiograph showing the integration of the 
green bone scaffold at 12-month follow-up 
(red arrow). (F) Pelvic 3D model showing 
incorporation of the green bone scaffold 
within the iliac crest defect (red arrow).

Figure 3
Application of calcium sulphate (stimulant) 
for the treatment of a tibial partial bone 
defect following debridement for late 
presentation of infection after union that 
required also removal of the plate. (A) 
Intra-opertaive picture showing the footprint 
of the plate after removal and the defect 
created following debridement of the 
infected bone area. (B) Intra-operative 
picture showing the application of stimulant 
to the defect area. (C) Intra-operative picture 
with covering of the defect area with 
stimulant. (D) AP and lateral tibial 
radiographs at 8 weeks showing that the 
defect is healing. (E) AP and lateral tibial 
radiographs 16 weeks later showing 
complete healing of the defect area.
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Calcium sulphate substitutes can be associated with 
a number of local complications including skin reaction 
and wound leak, although these complications are 
increasingly less common with the modern generation of 
products (138).

Hydroxyapatite

Hydroxyapatite (Ca10[PO4]6[OH}2) is a naturally occurring 
calcium apatite that forms the main constituent of the 
mineral component of bone. Its large pores allow for the 
attachment and interdigitation of osteoprogenitor cells 
alongside vascular ingrowth making it osteoconductive 
(4). It is readily resorbable, being replaced by the native 
bone through substitution. When combined with 
ceramics it is much more slowly resorbed (up to 10 
years), and whilst mechanically strong in compression 
and tension, remains brittle therefore acting as a potential 
stress concentrator (139).

Commercial hydroxyapatite is either bovine-derived, or 
synthetic with its main current clinical usage in dentistry 
either to augment the integration or in the management 
of small bony defects (140). For the management of small 
bone defects within the field of dentistry, hydroxyapatite has 
been demonstrated to be more efficacious than alternate 
bone substitutes such as βTCP (141). Though promising, 
animal studies have suggested that hydroxyapatite is 
inferior to autologous bone graft in the management 
of bone defects, likely due to its lack of osteoinductive 
activity (142). The ability of hydroxyapatite to produce 
similar results to autologous bone graft in terms of graft 
incorporation and restoration of mechanical strength 
occurs when an osteoinductive protein (recombinant 
human osteogenic protein-1) is added (142).

Within orthopaedic trauma, the main use of 
hydroxyapatite is in the coating of implants where it 
has been demonstrated to improve the shear strength 
and resistance to pull out with greater bone ongrowth 
(143). This is particularly demonstrated with the use of 
hydroxyapatite half-pins as part of an external fixation 
construct whereby the extraction torque of hydroxyapatite-
coated pins is nearly 100× that of non-coated half-pins, 
and rates of loosening reduce from 80% to just 4% (144).

Bioglass

Bioglass is a specialised form of glass that contains a high 
molar ratio of calcium, which promotes apatite crystals 
rendering the substance osteoconductive (145). They are 
formed through the heating of phosphor-silicate materials 
with calcium and sodium oxides which are subsequently 
submerged in water causing crystallisation and formation 
of the glass (146). The product can be made into putty 
for simple application or manipulated into complex 3D 
structures through extrusion printing, with the ability 

to vary the pore size to provide topographic signals to 
osteogenic cells (145).

Cortoss was one of the first commercially available 
Bioglass products, applied as a structural graft following 
kyphoplasty given its compressive strength similar to that 
of cortical bone. Cortoss proved to be an effective graft 
with little post-procedure collapse and positive clinical 
results in terms of pain reduction with few complications 
(147). Bioglasses have been demonstrated to be 
antibacterial, raising interest in their use in the treatment 
of fracture-related infections. Whilst the clinical series are 
small, results with Bioglass are promising with infection 
suppression rates of greater than 90% when utilised as part 
of dead space management following bone debridement 
(148, 149, 150, 151).

Bioactive glass has also been utilised in the 
management of post-traumatic bone defects. Pernaa 
et al. utilised BAG-S53P4 in the management of depressed 
tibial plateau fractures, with no difference in secondary 
collapse observed when compared to iliac crest autograft 
(152). Similar results were observed by Heikkila et al. in 
their randomized controlled study comparing S53P4 to 
iliac crest graft in tibial plateau fractures, again noting 
no difference in secondary displacement between the 
groups, despite higher initial displacement in the iliac 
crest group (153).

Clinical data regarding the utilisation of bioglass in 
Orthopaedic trauma remain limited, and there are a 
number of limitations to its use. It is a brittle material with 
slow resorption, producing a theoretical risk of fracture 
although the long-term follow-up in early clinical data 
is promising (154). It also exerts local pH changes that 
induce cytotoxicity in vitro, though clinically relevant 
effects have not yet been observed (155).

Coralline

Coral is a limestone structure created by marine 
invertebrates that extract calcium and phosphorous from 
the sea. It shares a similar structure to the cancellous bone 
which raised interest in the potential applications of coral 
in the human skeleton (156). Coralline when implanted 
into bone is biocompatible, facilitates vascular ingrowth, 
and is osteoconductive to the native bone-forming cells 
(157). Resorption of coral, as with native bone, is carried 
out by osteoclasts and the action of carbonic anhydrase 
(158). Currently, there are two commercially available 
coralline bone substitutes: coral in their native form with 
Biocoral, and a hydroxyapatite product derived from coral 
in the form of Pro Osteon (159).

In vitro corals have been demonstrated to facilitate the 
attachment, proliferation, and differentiation of MSCs, 
performing better than alternatives such as bone allograft 
and DBM (160, 161, 162). In addition to cell kinetics, corals 
result in high levels of alkaline phosphatase production, 
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calcium deposition, and osteogenic gene expression (163, 
164, 165). The efficacy of coralline-based substitutes was 
subsequently validated in animal models, where it has 
been demonstrated to be non-inferior to the autologous 
bone in bone defects in dog (166). Concerns were, 
however, raised at this stage with failure of the graft to 
fully incorporate, with bone instead growing around the 
coralline material (167).

In humans, initial problems were also seen with 
incorporation and containment of the graft material 
when utilised in the case of hindfoot arthrodesis, albeit 
with satisfactory clinical results (168). These problems 
were not, however, seen in the tibial plateau fracture 
population where coralline graft performed similarly to 
autologous bone graft (169). Successful consolidation 
was achieved in five cases of ulna non-union with the 
use of Biocoral, whereas a high failure rate was observed 
when utilising this substance to manage acute scaphoid 
fractures (159).

Overall, the literature supporting the use of coralline 
grafts is limited, with only a small volume series spanning 
a number of body areas available. The resorption of coral 
is unpredictable, and where ingrowth does not occur, 
coral can act as a physical barrier to bone healing. Results 
appear to be site-specific, with a suggestion for poorer 
bone healing in areas with poor blood flow.

Composite grafts

The term ‘composite graft’ refers to the process of 
combining different available materials in order to 
increase the biological properties and the volume of 
bone graft (170). Materials that can be used within this 
concept include autologous bone graft, allograft, BMP-
2, PRP, bone marrow aspirate, xenograft granules, and 
synthetic granules either existing in isolation or attached 
to collagen matrices (Fig. 4) (171). This approach has 
been popularised with the conceptual framework of the 
diamond concept for optimum biological stimulation for 
bone-guided regeneration and generally speaking is also 
known as ‘polytherapy’ (Fig. 5) (8).

The efficacy of polytherapy via composite grafts 
was recently reported by Giannoudis et  al. (172). They 
examined 64 patients (34 males) with a mean age of 45 
years (17–83) undergoing treatment for non-union of the 
femur (35), tibia (22), humerus (3), radius (2), or clavicle 
(2). Through the application of the diamond concept 
utilising a polytherapy approach, the authors were able 
to achieve union in 98% with a mean time to union of 
6 months. The authors of this study believe that such a 
successful union rate was achieved through the local 
provision of the essential constituents for bone repair and 
recommend that such a strategy is considered in such 
cases where poor bone healing is anticipated. Further 

high-volume studies should aim to further establish the 
effectiveness of composite grafting in this patient cohort.

Discussion

Bone is a constantly evolving tissue, responding to the 
forces placed upon it in order to maximise efficiency in 
supporting the functions of the body (173, 174). When 
injured it is primed with an intrinsic capacity for repair 
(175). Under certain conditions, there may be a need to try 
and enhance fracture repair, be that in the context of high-
risk injuries, such as those with bone loss, or in the case 

Figure 4
Graft materials used for composite grafting. (A) Autologous 
graft. (B) Allograft. (C) Xenograft (Orthos). (D) BMP-7. (5) Bone 
marrow aspirate.

Figure 5
Treatment of a tibial defect utilising the polytherapy approach. 
Implantation of (A) concentrated bone marrow aspirate 
(progenitor cells), (B) BMP-7, and (C) RIA graft.
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of non-union where the fracture will fail to heal without 
further intervention.

Initial assessment of progress towards union must 
always consider the mechanics of the device employed, 
and if the mechanical environment is appropriate to 
facilitate bone healing as intended by the operating 
surgeon, be that via primary or secondary healing. From 
the interfragmentary strain concept popularised by 
Perren, we are aware that the tissues within the fracture 
site have differing strain tolerances, with the progression 
from granulation tissue through to the formation of bone 
dependent on the provision of an appropriate mechanical 
environment (176). Both too rigid and too flexible a 
fixation will preclude to non-union, with the bone healing 
unit often intact and biological non-union a relative rarity 
in isolation (177). As such alteration of the mechanics is 
a frequent aim of non-union surgery, with techniques 
including dynamization, percutaneous strain reduction 
screws, exchange nailing to a larger diameter nail, or the 
Ilizarov technique (178, 179, 180, 181). With techniques 
such as exchange nailing, in addition to improving the 
mechanical environment, there is a significant biological 
stimulus with the reaming process resulting in the local 
influx of growth factors including TGFβ, platelet-derived 
growth factor, and insulin-like growth factor (182).

There also exist non-operative techniques to stimulate 
the biology of non-healing fractures, particularly 
in comorbid patients who are at high risk from an 
anaesthetic point of view. Low-intensity pulsed ultrasound 
(LIPUS) is a non-invasive technique that works through 
stimulating osteoblastic activity. Compared to controls, 
patients managed with LIPUS generate greater osteoid 
thickness with higher callus volume (183). When utilised 
to augment healing in acute fractures, LIPUS has been 
demonstrated to reduce the healing time of fractures by 
30–40%; whilst in the management of non-union, LIPUS 
has been demonstrated to achieve union in 82% of cases 
(184, 185).

Where surgical augmentation of biology is required, 
autologous bone grafting remains the gold standard, 
with or without further augmentation with osteoinductive 
factors. In a review of 182 cases of long bone non-union, 
Flierl et  al. demonstrated a significant shorter time to 
union when utilising autograft (198 days) compared to 
allograft (416 days) and combined allograft and autograft 
(389 days) (186). The autograft group also required fewer 
revision surgeries (17% vs 47% and 25%, respectively) 
and had the lowest rates of post-operative infection. 
When bone grafting is combined with the provision of 
osteoinductive mediators and an appropriate mechanical 
environment as per the diamond concept, the rate of 
treatment success in the management of long bone non-
union is between 89 and 100%, compared to just 44 and 
90% when this concept is only partially applied (9).

Further complexity is added to the management 
of bone healing when critical-sized bone defects are 
present, defined as those defects that would not heal 
spontaneously within the patient’s lifetime (187). In these 
situations, the two main techniques employed are the 
masquelet technique and bone transport.

The masquelet technique is a two-stage technique 
whereby an initial debridement is undertaken with a cement 
spacer placed into the defect and appropriate stabilisation 
of the bone provided. A vascularised membrane forms 
around the spacer, and following a period of 6–8 weeks, 
this membrane is opened, the cement removed, and 
bone graft inserted with or without additional adjuncts 
(such as BMAC and BMP) (7). In a recent series examining 
this technique, union was achieved in 88% of cases with 
an average time to union of 8 months (188). Given the 
volume of graft required, consideration should be given 
to the harvest site with RIA reaming of the contralateral 
femur (up to 90 cc) or the posterior iliac crest (up to 88 
cc) providing the highest volumes of graft (189). The 
graft volume can be further expanded through the use 
of a bone substitute as a graft expander either synthetic 
pr bovine (e.g. Vitoss/greenbone or orthos), and further 
osteogenic/osteoinductive mediators can be provided 
through the addition of BMAC and BMP (188).

Bone transport utilises an external fixation device to 
transpose a bone segment via a corticotomy at a rate of 
1 mm/day. New bone forms within the defect created, 
followed by the bone defect gradually reducing until the 
bone ends dock and are compressed (190). Alternatively, 

Figure 6
Demonstration of enhancing the biological properties of 
allograft material. (A) Femoral head allograft. (B) Processing of 
femoral head into bone chips. (C) Loading of allograft chips 
with autologous PRP and concentrated bone marrow aspirate. 
(D) Difference in the macroscopic appearance of the allograft 
after enhancement appearing more viable (red) possessing 
inductivity and cellularity.

Downloaded from Bioscientifica.com at 05/11/2023 03:10:17PM
via free access



www.efortopenreviews.org

8:5INSTRUCTIONAL LECTURE: 
GENERAL ORTHOPAEDICS

274

the limb can be acutely shortened and re-lengthened 
through a distant corticotomy (191). Results with this 
technique are positive with union rates around 90% 
following an average time frame of 10–11 months (192). 
Good to excellent functional rates are achieved in over 80% 
of cases though the treatment morbidity can be high with 
an average of 1.22 complications per patient including pin 
tract infections, joint stiffness, and refracture (192). The 

advent of cable transport has further expanded the role of 
bone transport to larger defects or those with poor quality 
soft tissues and also facilitates improved weight bearing 
with reduced pain during the transport phase (193, 194).

The concept of composite grafting (polytherapy) 
appears to be a sensible option for one to consider 
particularly for the treatment of recalcitrant non-unions, 
critical size bone defects, and in patients with compromised 

Table 1  Bone graft materials assigned into different categories. Category I and II graft materials: Used to promote healing in non-unions, bone voids, 
bone defects, fusions of joints (arthrodesis). Category III and IV materials: Used to provide structural support in articular impaction injuries, provide 
healing for bone voids, fusion of joints, osteotomies, be used as graft expanders and for composite grafting.

Category Bone graft materials

I: Harversted bone graft materials
1.	 Autologous
2.	 Allogenic
3.	 Xenograft
4.	 Bone marrow aspirate

II: Inductive materials – Growth factors
1.	 BMPs
2.	 PRP
3.	 Demineralised bone matrix

III: Ceramic based bone graft substitutes (scaffolds)
1.	 Calcium hydroxyapatite
2.	 Tricalcium phosphate
3.	 Calcium sulphate
4.	 Injectable ceramic cements
5.	 Bioglass

IV: Miscellaneous
1.	 Coralline - HA

Figure 7
Overview of materials used in the clinical setting based on their properties and limitations of their use.

Downloaded from Bioscientifica.com at 05/11/2023 03:10:17PM
via free access



www.efortopenreviews.org

8:5INSTRUCTIONAL LECTURE: 
GENERAL ORTHOPAEDICS

275

biological host responses such as smokers, diabetics, and 
arteriopaths (peripheral vascular disease). Enhancing 
the biological properties and potency of a graft material 
appears to generate powerful osteogenic and angiogenic 
conditions mediating a timely if not faster completion 
of the desirable healing processes (Fig. 6). However, it is 
imperative for one not to forget that for any graft material 
to successfully work, the bed of implantation must be 
aseptic, vascular, and possessing adequate mechanical 
stabilisation.

The selection and/or combination of the graft material 
to be used is the surgeon’s choice who must analyse the 
conditions of the local environment, the sequelae of the 
original injury to the affected extremity (for instance, if it 
was an open fracture or a crush injury: what is the state/
vitality of the muscular bed, periosteum, limb vascularity, 
etc), the existence of underlying comorbidities of the host 
(patient) and the anticipated volume of graft material that 
will be needed. Only then the correct decision will be 
taken for the right patient and the right indication. Table 1 
shows a summary of the different bone graft materials 
that can be considered for implantation grouped into 
different categories and how the different graft materials 
could be used in isolation or in combination for bone 
grafting procedures. Figure 7 provides a summary of their 
properties and limitations.

Conclusion

Augmentation of bone healing remains a complex 
problem, with a number of different potential solutions. 
When required, each case must be carefully considered to 
establish which factors are deficient, and therefore what 
stimulus is required bet that mechanical or biological. 
The gold standard for augmenting bone healing remains 
autologous bone graft; however, limitations in volume 
mean that combination with other techniques is often 
required to achieve successful union. Appropriate graft 
selection requires that the operating surgeon is familiar 
with the properties they possess as well as their limitations 
in order to select the correct material for the right 
indication.
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